您好, 访客   登录/注册

让学生成为主角

来源:用户上传      作者: 邹 玲

  摘要:活跃课堂气氛,全面地调动学生的学习积极性,发挥教师的主导作用和学生的主体作用,让学生在互相讨论的过程中学会自己分析转换问题,解决问题。
  关键词:兴趣;气氛;积极性
  中图分类号:G632文献标识码:A文章编号:1003-2851(2010)08-0206-01
  
  在教学实践过程中,笔者发现排列组合问题一直是影响学生取得高分的难点之一。排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。有相当一部分题目教者很难用比较清晰简洁的语言讲给学生听,有的即使教者觉得讲清楚了,但是由于学生的认知水平,思维能力在一定程度上受到限制,还不太适应。从而导致学生对题目一知半解,甚至觉得“云里雾里”,影响了学生学习的兴趣。
  笔者认为之所以学生“怕”学排列组合,主要还是因为排列组合的抽象性,那么解决问题的关键就是将抽象问题具体化,我们不妨将原题进行一下转换,让学生走进题目当中,成为“演员”,成为解决问题的决策者。这样做不仅激发了学生的学习兴趣,活跃了课堂气氛,还充分发挥学生的主体意识和主观能动性,能让学生从具体问题的分析过程中得到启发,逐步适应排列组合题的解题规律,从而做到以不变应万变。当然,在具体的教学过程中一定要注意题目转换的等价性,可操作性。
  下面笔者将就教学过程中的两个难点通过两个特例作进一步的说明:1、占位子问题例1:将编号为1、2、3、4、5的5个小球放进编号为1、2、3、4、5的5个盒子中,要求只有两个小球与其所在的盒子编号相同,问有多少种不同的方法?
  ①仔细审题:在转换题目之前先让学生仔细审题,从特殊字眼小球和盒子都已“编号”着手,清楚这是一个“排列问题”,然后对题目进行等价转换。
  ②转换题目:在审题的基础上,为了激发学生兴趣进入角色,我将题目转换为:让学号为1、2、3、4、5的学生坐到编号为1、2、3、4、5的五张凳子上(已准备好放在讲台前),要求只有两个学生与其所坐的凳子编号相同,问有多少种不同的坐法?
   ③解决问题:这时我在选另一名学生来安排这5位学生坐位子(学生争着上台,积极性已经得到了极大的提高),班上其他同学也都积极思考(充分发挥了学生的主体地位和主观能动性),努力地“出谋划策”,不到两分钟的时间,同学们有了统一的看法:先选定符合题目特殊条件“两个学生与其所坐的凳子编号相同”的两位同学,有C 种方法,让他们坐到与自己编号相同的凳子上,然后剩下的三位同学不坐编号相同的凳子有2种排法,最后根据乘法原理得到结果为2×C =20(种)。这样原题也就得到了解决。
  ④学生小结:接着我让学生之间互相讨论,根据自己的分析方法对这一类问题提出一个好的解决方案。(课堂气氛又一次活跃起来)
  ⑤老师总结:对于这一类占位子问题,关键是抓住题目中的特殊条件,先从特殊对象或者特殊位子入手,再考虑一般对象,从而最终解决问题。
  2、分组问题例2:从1、3、5、7、9和2、4、6、8两组数中分别选出3个和2个数组成五位数,问这样的五位数有几个?
   (本题我是先让学生计算,有很多同学得出的结论是P ×P )
  ①仔细审题:先由学生审题,明确组成五位数是一个排列问题,但是由于这五个数来自两个不同的组,因此是一个“分组排列问题”,然后对题目进行等价转换。
  ②转换题目:在学生充分审题后,我让学生自己对题目进行等价转换,有一位同学A将题目转换如下:从班级的第一组(12人)和第二组(10人)中分别选3位和2位同学分别去参加苏州市举办的语文、数学、英语、物理、化学竞赛,问有多少种不同的选法?
  ③解决问题:接着我就让同学A来提出选人的方案同学A说:先从第一组的12个人中选出3人参加其中的3科竞赛,有P ×P 种选法;再从第二组的10人中选出2人参加其中2科竞赛有P ×P 种选法;最后由乘法原理得出结论为(P ×P )×(P ×P )(种)。(这时同学B表示反对)
   同学B说:如果第一组的3个人先选了3门科目,那么第二组的2人就没有选择的余地。所以第二步应该是P ×P .(同学们都表示同意,但是同学C说太蘩)
  同学C说:可以先分别从两组中把5个人选出来,然后将这5个人在5门学科中排列,他列出的计算式是C ×C ×P (种)。(再次通过互相讨论,都表示赞赏)
  这样原题的解答结果就“浮现”出来C ×C ×P (种)。
   ④老师总结:针对这样的“分组排列”题,我们多采用“先选后排”的方法:先将需要排列的对象选定,再对它们进行排列。
  以上是我一节课两个例题的分析过程,旨在通过这种方法的尝试,进一步活跃课堂气氛,更全面地调动学生的学习积极性,发挥教师的主导作用和学生的主体作用,让学生在互相讨论的过程中学会自己分析转换问题,解决问题。


转载注明来源:https://www.xzbu.com/9/view-913317.htm