一类与余弦函数有关的解析函数的三阶Hankel和Toeplitz行列式
来源:用户上传
作者:
摘要:设Sc*是一类定义在单位圆盘D={z:|z|<1}内解析的正規化函数,且满足?cosz(z∈D).本文主要研究了与余弦函数有关的函数类Sc*的三阶Hankel行列式H3(1)和Toeplitz行列式T3(2),并得到其上界估计.
关键词:解析函数;三阶Hankel行列式;三阶Toeplitz行列式;上界估计
中图分类号:O174.5 文献标识码:A 文章编号:1673-260X(2019)06-0014-03
1 引言与预备知识
参考文献:
〔1〕NE Cho, V Kumar, SS Kumar and V Ravichandran,. Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 2018, 00(0): 1-7.
〔2〕BANSAL D. Upper bound of second Hankel determinant for a new class of analytic functions[J]. Applied Mathematics Letters, 2013, 26(1): 103-107.
〔3〕NOOAN J W, THOMAS D K. On the second Hankel determinant of areally mean p-valent functions[J]. Transactions of the American Mathematical Society, 1976, 223(2): 337-346.
〔4〕FEKETE M, SZEG?G. Eine benberkung uber ungerada schlichte funktionen[J]. J London Math Soc, 1933, 8(2): 85-89.
〔5〕D. K. Thomas and S. A. Halim, Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions, Bull. Malays. Math. Sci. Soc., Doi: 10.1007/s40840-016-0385-4, 10 pages.
〔6〕LIU M S, XU J F, YANG M. Upper bound of second Hankel determinant for certain subclasses of analytic functions[J]. Abstract and Applied Analysis, 2014, (2014):1-10.
〔7〕SINGH G. Hankel determinant for new subclasses of analytic functions with respect to symmetric points[J]. Int J of Modern Mathematical Sciences, 2013, 5(2): 67-76.
〔8〕KEONG S L, RAVICHANDRAN V, SUPRAMANIAML S. Bounds for the second Hankel determinant of certain univalent functions [J]. Leeetal J of Inequalities and Applications, 2013, 2013(1): 281-298.
〔9〕JANTENG A, ABDUL H S, DARUS M. Hankel Determinant for Starlike and Convex Functions [J]. Int J of Math. Analysis, 2007, 13(1): 619 - 625.
〔10〕RAZA M, MALIK S N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of bernoulli[J]. J of Inequalities and Applications, 2013, (2013): 1-8.
〔11〕张海燕,汤获,马丽娜.与共轭点有关的一类解析函数的三阶Hankel行列式[J].应用泛函分析学报,2017,19(3):279-286.
〔12〕张海燕,汤获,马丽娜.一类解析函数的三阶Hankel行列式上界估计[J].纯粹数学与应用数学,2017,33(2):211-220.
〔13〕张海燕,马丽娜,王焕.某类具有对称共轭点的倒星象函数的三阶Hankel行列式上界估计[J].纯粹数学与应用数学,2017,33(5):503-512.
〔14〕DUREN P L. Univalent functions, in:Grundlehren der Mathematischen Wissenschaften[M]. New York: Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983, 259: 162-205.
〔15〕LIBERA R J, ZLOTKIEWICZ E J. Coefficients bounds for the inverse of a function with derivative in P[J]. Proc Amer Math Soc, 1983, 87(2): 251-257.
转载注明来源:https://www.xzbu.com/1/view-14920255.htm