人参皂苷Rg1缓解糖尿病并发症的研究进展
来源:用户上传
作者:苏惠 李树德 尹凤琼 杨建宇
摘要:糖尿病是临床上影响人类健康的主要疾病之一,主要包括1型和2型糖尿病,其中胰岛素抵抗诱导的2型糖尿病占主导。在糖尿病的进展过程中往往伴随肾脏、心脏、肝脏、神经系统等组织器官的损伤。因此,降低血糖防止并发症的发生和发展是治疗糖尿病的重要手段。人参皂苷Rg1作为中国传统中药材人参和三七中的主要活性成分,具有抗炎症、抗氧化、抗凋亡、脂质调节和降低血糖等作用,目前,已经有文献报道,人参皂苷Rg1对糖尿病导致的心肌病、肾病、脂肪肝等具有一定的缓解作用,本文就人参皂苷Rg1在糖尿病并发症中的作用进行综述,为进一步促进人参和三七及其提取物的开发和利用提供科學的理论依据。
关键词:人参皂苷Rg1;糖尿病;并发症
中图分类号:R587文献标志码:A文章编号:1007-2349(2020)04-0089-05
Research Progress of Ginsenoside Rg1 in Relieving Diabetic Complications
SU Hui1,LI Shu-de1,YIN Feng-qiong2,YANG Jian-yu1
(1. School of Basic Medicine,Kunming Medical University,Kunming 650500,China;2. The Second Affiliated Hospital of Kunming Medical University,Kunming 650500,China)
【Abstract】Diabetes is one of the main clinical diseases that affect human health,mainly including diabetes type 1 and type 2,of which type 2 diabetes induced by insulin resistance is dominant. In the progress of diabetes,patients are often accompanied by damage to their kidneys,heart,liver,nervous system and other tissues and organs. Therefore,the reduction of blood sugar to prevent the occurrence and development of complications is an important means of treating diabetes. Ginsenoside Rg1,as the main active ingredient of Ginseng and Panax notoginseng in traditional Chinese herbal medicine,has the effects of anti-inflammatory,anti-oxidation,anti-apoptosis,lipid regulation and blood sugar lowering. At present there have been reports in the literature that Ginsenoside Rg1 has a certain relief effect on cardiomyopathy,nephropathy and fatty liver resulting from diabetes. This paper reviews the role of Ginsenoside Rg1 in diabetic complications and provides a scientific theory for the further development and utilization of Ginseng and Panax notoginseng.
【Key words】Ginsenoside Rg1,diabetes,complications
糖尿病(Diabetic mellitus,DM)是继肿瘤和心血管疾病之后第三大威胁人类健康的慢性疾病,其发病率在全球范围内持续升高,2017年糖尿病患者已达到4.51亿左右,预计到2045年其发病率将增加到6.93亿[1]。在糖尿病中,主要包括1型和2型糖尿病,其中2型糖尿病占比全球人口的6.28%[2]。糖尿病晚期伴随的心脏、肾脏、中枢神经和外周神经等重要脏器的损伤成为主要的并发症[3],这些并发症往往成为该疾病死亡的主要原因之一。对糖尿病及并发症发生和发展的机制尚不完全清楚,针对其相关的治疗有待进一步探讨。
人参和三七是中国传统中药材,人参皂苷Rg1(Ginsenoside Rg1)作为其有效单体活性成分之一,具有广泛的药理学活性[4]。研究已经证实,人参皂苷Rg1在抗凋亡、抗炎症、抗氧化、抗抑郁、脂质调节、抗衰老等[5~9]方面发挥着广泛的作用。同时在糖尿病及其并发症中,人参皂苷Rg1具有降血糖、减轻胰岛素抵抗的特点[6]。对于其并发症,也有部分的研究报道,本文针对人参皂苷Rg1与糖尿病并发症的研究进展进行如下的综述。
1人参皂苷Rg1对糖尿病心肌病的作用
糖尿病心肌病(Diabetic cardiomyopathy,DCM)以心肌代谢紊乱和心脏微血管病变为主要特征,引起心肌的结构和功能异常,最终导致心衰,DCM是糖尿病患者主要的死亡原因之一[10]。Yu等[11]通过建立链脲佐菌素(Streptozotocin,STZ)诱导的2型糖尿病动物的模型发现,人参皂苷Rg1可以通过抑制内质网应激诱导的caspase12活性,降低2型糖尿病大鼠心肌细胞的凋亡,减轻心肌胶原蛋白的合成从而改善心肌功能。糖尿病心肌组织NF-κB(Nuclear factor kappa-B,NF-κB)被阻断时,氧化应激和炎症反应减轻,2型糖尿病小鼠心功能不全得到缓解[12];人参皂苷Rg1可以降低NF-κB的表达和炎性小体的生成,减轻心肌组织的氧化应激和细胞凋亡[13]。另外,Qin等[14]阐明人参皂苷Rg1可通过激活AMP依赖的蛋白激酶(Adenosine 5‘-monophosphate(AMP)-activated protein kinase,AMPK)能量代谢途径的激活,促进线粒体生物的合成,抑制心肌细胞的凋亡。Yuan等[15]在I/R模型中发现,人参皂苷Rg1通过上调低氧诱导因子-1α(Hypoxia-inducible factor-1α,HIF-1α)的表达,激活ERK信号通路,减少心肌损伤。因此,人参皂苷Rg1通过抑制糖尿病心肌细胞的氧化应激、炎症、凋亡和促进能量代谢,可能对糖尿病心肌病产生一定的保护作用。 2人参皂苷Rg1对糖尿病肾病的作用
糖尿病肾病(Diabetic nephropathy,DN),是一种常见的累及微血管病变的糖尿病并发症,是糖尿病致死的主要原因,是导致终末期肾病的主要原因,以高血糖、氧化应激、炎症和肾功能损伤为主要特点[16]。目前的研究认为,长期的高血糖刺激可导致肾脏微血管的功能异常。抑制氧化应激和TGF-β/Smads信号转导有望成为治疗DN的有效靶点[17];在DN中,醛固酮含量增多引起氧化应激因子释放,造成足细胞的損伤。临床上针对发病的机制,常常通过控制血糖、脂质、血压和预防肥胖,采用RAS阻滞剂来减缓糖尿病的肾脏损伤[17,18]。当然,人参皂苷Rg1对DN的干预作用也有部分的研究报道,在糖尿病动物模型的研究中,人参皂苷Rg1能够有效缓解醛固酮诱导的氧化应激的作用[19],降低活性氧(Reactive oxygen species,ROS)的代谢产物,来预防大鼠膜性肾病[20]。Ma等[21]通过建立糖尿病动物模型中发现,人参皂苷Rg1降低血清肌酸、C反应蛋白和TNF-α和24小时尿蛋白等指标,抑制肾脏组织的TGF-β1的表达,改善肾脏的炎症反应和病理变化。人参皂苷Rg1通过抑制AMPK/mTOR信号通路缓解糖尿病肾病中醛固酮增加引起的氧化应激和异常的自噬,保护肾脏功能[22]。这些研究结果反应人参皂苷Rg1对糖尿病肾病的肾脏功能具有保护作用。
3人参皂苷Rg1对糖尿病脂肪肝的作用
在肥胖人群中,往往伴有糖类和脂质代谢的异常,可诱导胰岛素抵抗导致糖尿病的发生,同时糖尿病患者的脂质代谢异常会加重肝脏的脂类累积,形成糖尿病脂肪肝(Diabetic fatty liver,DFI)[23,24]。人参皂苷Rg1对肥胖和糖尿病导致的脂类代谢异常已有报道。Liu等[25]通过建立高脂高糖饲料诱导的小鼠肥胖动物模型发现,人参皂苷Rg1可降低小鼠体重、总胆固醇、总甘油三酯水平,诱导AMPK活化,抑制脂肪生成,减轻脂肪的脂质沉积,以抗肥胖的方式起到保护肝脏作用。人参皂苷Rg1通过抑制Toll样受体信号通路减缓脂多糖/D-半乳糖诱导小鼠的急性肝损伤,发挥其肝脏保护作用[26]。在糖尿病动物模型中,人参皂苷Rg1改善大鼠天冬氨酸转氨酶和丙氨酸转氨酶指标,降低血脂水平,对肝脏起到保护作用[24]。人参皂苷Rg1通过减少磷酸烯醇式丙酮酸激酶和葡萄糖6磷酸酶的转录,降低磷酸化AKT的激活,来降低肝葡萄糖的产生[27],从而减少肝葡萄糖转变为脂类,避免脂质在肝脏的进一步积累。这种作用阐明人参皂苷Rg1对肥胖和糖尿病导致的肝脏脂质沉积具有较好的缓解作用。
4人参皂苷Rg1糖尿病视网膜病变的作用
糖尿病视网膜病变(Diabetic Retinopathy,DR)主要表现为糖尿病性微血管病变,是一种具有特异性眼底病变,是1型糖尿病和2型糖尿病的较为严重并发症,也是临床上不可逆失明的主要原因之一[28]。糖尿病所导致的高血糖状态可引起视网膜微血管改变,如血管内细胞的丢失和外渗[29]。视网膜内皮细胞中葡萄糖循环水平增加,生化状态的异常亦可加重DR[30]。人参皂苷Rg1对预防DR也有相关的研究和报道,Ying等[31]发现,在db/db糖尿病视网膜病变小鼠模型中,人参皂苷Rg1干预可以激活DR早期的IRS-1/Akt/GSK3β信号通路,阻断tau蛋白诱导的视网膜神经节细胞突触的神经变性,改善视觉功能。人参皂苷Rg1通过上调miR-26a、抑制ERK和Wnt/β-ca-tenin通路,保护DR免受炎症损伤[32]。人参皂苷Rg1能够抑制糖尿病视网膜病变大鼠的血清胱抑素C和趋化素的表达,从而对糖尿病视网膜病变具有一定的防治作用[33]。在增生性糖尿病视网膜病变中,人参皂苷Rg1具有抑制高糖以及金属基质蛋白酶的表达,调节RP11-982M15.8/miR-2113/zeb1信号通路,对增生性糖尿病视网膜病变具有缓解作用[34]。以上研究揭示了人参皂苷Rg1对DR突触神经病变疾病中的神经保护干预策略的潜在治疗意义和价值。
5人参皂苷Rg1对糖尿病性脑梗塞的作用
糖尿病性脑梗塞(Diabetic cerebral infarction,DCI),是最常见的脑血管疾病之一,具有高发病率、高死亡率、预后差的特点[35]。1型糖尿病脑卒中的发病率是2型糖尿病的4倍,高血糖持续刺激可能导致缺血性损伤的严重程度加剧,从而导致更大范围的脑梗塞。目前,对于合并糖尿病的脑血栓患者通过静脉溶栓技术的临床治疗欠佳,可能与患者长期血糖水平增高,造成脑血管和神经组织的损伤相关[36]。研究表明,人参皂苷Rg1具有中枢神经保护的作用。人参皂苷Rg1对兴奋性神经递质的急性过度刺激以及神经毒素的损伤具有保护作用,可能是治疗神经退行性疾病的潜在药物[37]。在体内和体外的实验研究中发现,人参皂苷Rg1对Wnt/β-catenin信号通路标记的蛋白质和mRNA表达水平具有调控作用,并且发挥保护神经细胞的作用[38]。人参皂苷Rg1可通过纳米材料吸附透过血脑屏障,减小大鼠糖尿病脑梗塞的面积,改善大鼠的脑功能[39]。通过体内和体外实验研究证实,人参皂苷Rg1通过抑制miR-144激活Nrf2/ARE信号通路,保护神经元免受缺血/再灌注诱导的损伤[40]。人参皂苷Rg1通过抑制凋亡,激活eNOS,增加VEGF的表达,可改善糖尿病小鼠缺血的血管生成,加快血管的生成和侧支循环的建立[41],可作为治疗动脉疾病的新型辅助药物。因此,人参皂苷Rg1通过减轻有害神经递质的刺激,加快血管生成,对糖尿病脑梗塞的神经细胞产生一定的保护作用。
当然,糖尿病的并发症还涉及到糖尿病周围神经的病变,包括皮肤损伤和糖尿病足等变化。人参皂苷Rg1能够提高内皮细胞的血管生成,促进糖尿病足溃疡的伤口闭合[42]。在糖尿病周围神经病变引起的相关疾病中具有一定的保护作用。 6总结与展望
糖尿病及并发症已被人们广泛的关注与熟知。面对糖尿病及并发症对人类健康的威胁,寻求一种疗效好,副作用小的药物将成为药物研发的主要思路。根据人参皂苷Rg1所特有的药理作用可能对治疗糖尿病及并发症具有良好的缓解作用,结合临床上更多的研究数据,将为临床上采用人参皂苷Rg1治疗糖尿病及并发症提供科学的理论依据,开拓新的应用领域,大力发展我国绿色产业,也将不断促进科研和临床对人参或三七的深度开发和利用。
参考文献:
[1]N.H.CHO,J.E.SHAW,S.KARURANGA,et al.IDF Diabetes Atlas:Global estimates of diabetes prevalence for 2017 and projections for 2045[J].Diabetes research and clinical practice,2018,138,271-281.
[2]M.A.B.KHAN,M.J.HASHIM,J.K.KING,et al. Epidemiology of Type 2 Diabetes-Global Burden of Disease and Forecasted Trends[J].Journal of epidemiology and global health,2020,10(1):107-111.
[3]P.M.HERATH,N.CHERBUIN,R.ERAMUDUGOLLA,et al.The Effect of Diabetes Medication on Cognitive Function:Evidence from the PATH Through Life Study[J].J BioMed Research International,2016,2016(4):1-7.
[4]Y.J.KIM,J.N.JEON,M.G.JANG,et al.Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer[J].J Journal of Ginseng Research,2014,38(1):66-72.
[5]X.FA,J.TAO,Y.ZHOU,et al.Investigations on the effects of ginsenoside-Rg1 on glucose uptake and metabolism in insulin resistant HepG2 cells[J].J European Journal of Pharmacology,2019,84(3):277-284.
[6]G.ZU,J.GUO,N.CHE,et al.Protective effects of ginsenoside Rg1 on intestinal ischemia/reperfusion injury-induced oxidative stress and apoptosis via activation of the Wnt/[AKI^]2-catenin pathway[J].J Sci Rep,2016,6(38480):1-12.
[7]C.FAN,Q.SONG,P.WANG,et al.Neuroprotective Effects of Ginsenoside-Rg1 Against Depression-Like Behaviors via Suppressing Glial Activation,Synaptic Deficits,and Neuronal Apoptosis in Rats[J].Front Immunol,2018,9,2889.
[8]X.YASHU,Y.CHENG,Z.SHUJUN,et al.Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation,endoplasmic reticulum stress,and inflammasome activation.[J].J Biological & pharmaceutical bulletin,2018,41(11):1638-1644.
[9]S.JIAZHENG,Z.LIHENG,Z.JING,et al.Protective effects of ginsenoside Rg1 on splenocytes and thymocytes in an aging rat model induced by d-galactose.[J].J International immunopharmacology,2018,58,94-102.
[10]劉雅玲,周辰,潘晓东,et al.胰岛素对2型糖尿病心肌病大鼠的心肌保护机制[J].J 实用老年医学,2017,31(8):731-734.
[11]H.YU,J.ZHEN,Y.YANG,et al.Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model[J].J Journal of Cellular Molecular Medicine,2016,20(4):623-631. [12]H.J.MAIER,T.G.SCHIPS,W.ASTRID,et al. Cardiomyocyte-specific IκB kinase(IKK)/NF-κB activation induces reversible inflammatory cardiomyopathy and heart failure[J].J Proc Natl Acad Sci U S A,2012,109(29):11794-11799.
[13]H.T.YU,J.ZHEN,B.PANG,et al.人參皂苷Rg1 对糖尿病大鼠心肌氧化应激及细胞凋亡的影响[J].浙江大学学报,2015,16(5):344-354.
[14]Q.QIN,N.LIN,H.HUANG,et al.Ginsenoside Rg1 ameliorates cardiac oxidative stress and inflammation in streptozotocin-induced diabetic rats[J].Diabetes Metab Syndr Obes,2019,12,1091-1103.
[15]C.YUAN,H.WANG,Z.YUAN.Ginsenoside Rg1 inhibits myocardial ischaemia and reperfusion injury via HIF-1 α-ERK signalling pathways in a diabetic rat model[J].J Die Pharmazie-An International Journal of Pharmaceutical Sciences,2019,74(3):157-162.
[16]李莎,胡明亮.人参皂苷Rg1对糖尿病肾病大鼠肾保护作用的分子机制探讨[J].J 中国中医药科技,2018,25(2):208-211.
[17]D.NA,X.ZHIPING,G.MINGYUE,et al.Combination of Ginsenoside Rg1 and Astragaloside IV reduces oxidative stress and inhibits TGF-β1/Smads signaling cascade on renal fibrosis in rats with diabetic nephropathy.[J].J Drug design,development and therapy,2018,(12):3517-3524.
[18]C.CHEN,C.WANG,C.HU,et al.Normoalbuminuric diabetic kidney disease[J].J Frontiers of Medicine,2017,11(3):310-318.
[19]N.MAO,Y.CHENG,X.L.SHI,et al.Ginsenoside Rg1 protects mouse podocytes from aldosterone-induced injury in vitro[J].Acta Pharmacol Sin,2014,35(4):513-522.
[20]Y.LI,F.WANG,Y.LUO.Ginsenoside Rg1 protects against sepsis-associated encephalopathy through beclin 1-independent autophagy in mice[J].J Journal of Surgical Research,2017,(207):181-189.
[21]X.MA,X.XIE,C.ZUO.Effects of Ginsenoside Rg1 on Streptozocin-Induced Diabetic Nephropathy in Rats[J].J Journal of Biomedical Engineering,2010,27(2):342-347.
[22]L.WANG,N.MAO,R.Z.TAN,et al.Ginsenoside Rg1 reduces aldosterone-induced autophagy via the AMPK/mTOR pathway in NRK-52E cells[J].International journal of molecular medicine,2015,36(2):518-526.
[23]R.E.JUNG.Nonalcoholic Fatty Liver Disease and Diabetes:An Epidemiological Perspective.[J].J Endocrinology and metabolism(Seoul,Korea),2019,34(3):226-233.
[24]W.TIAN,L.CHEN,L.ZHANG,et al.Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats[J].Genet Mol Res,2017,16(1):gmr16019463.
[25]H.LIU,J.WANG,M.LIU,et al.Antiobesity Effects of Ginsenoside Rg1 on 3T3-L1 Preadipocytes and High Fat Diet-Induced Obese Mice Mediated by AMPK[J].J Nutrients,2018,10(7):830. [26]C.NING,X.GAO,C.WANG,et al.Hepatoprotective effect of ginsenoside Rg1 from Panax ginseng on carbon tetrachloride-induced acute liver injury by activating Nrf2 signaling pathway in mice[J].Environmental toxicology,2018,33(10):1050-1060.
[27]Q.LIU,Z.FEI-GE,Z.WEN-SONG,et al.Ginsenoside Rg1 Inhibits Glucagon-Induced Hepatic Gluconeogenesis through Akt-FoxO1 Interaction[J].J Science Foundation in China,2017,7(4):4001-4012.
[28]D.E.J,S.J.K,S.A.W.Diabetic retinopathy:current understanding,mechanisms,and treatment strategies.[J].J JCI insight,2017,2(14):e93751.
[29]A.CHRONOPOULOS,K.TRUDEAU,S.ROY,et al.High Glucose-induced Altered Basement Membrane Composition and Structure Increases Trans-endothelial Permeability:Implications for Diabetic Retinopathy[J].J Current Eye Research,2011,36(8):747-753.
[30]T.F.TZENG,S.S.LIOU,Y.C.TZENG,et al.Zerumbone,a Phytochemical of Subtropical Ginger,Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats[J].Nutrients,2016,8(8):449.
[31]Y.YING,Y.L.ZHANG,C.J.MA,et al.Neuroprotective Effects of Ginsenoside Rg1 against Hyperphosphorylated Tau-Induced Diabetic Retinal Neurodegeneration via Activation of IRS-1/Akt/GSK3beta Signaling[J].Journal of agricultural and food chemistry,2019,67(30):8348-8360.
[32]Q.SHI,X.CHEN,G.SUN,et al.Ginsenoside Rg1 protects human retinal pigment epithelial ARPE-19 cells from toxicity of high glucose by up-regulation of miR-26a[J].Life sciences,2019,221,152-158.
[33]刘松.人参皂苷对糖尿病视网膜病变大鼠血清中胱抑素C及Chemerin的影响[J].J 中医临床研究,2018,10(4):6-8.
[34]L.P.XUE,X.L.FU,M.HU,et al.Rg1 inhibits high glucose-induced mesenchymal activation and fibrosis via regulating miR-2113/RP11-982M15.8/Zeb1 pathway[J].Biochemical and biophysical research communications,2018,501(4):827-832.
[35]W.ZHANG,X.ZHANG.Correlation Between the Youth Cerebral Infarction in Different TOAST Classifications and High Homocysteine[J].J Cell Biochemistry Biophysics,2015,71(1):39-42.
[36]曾培灿,肖颖秀,曾宪杰,et al.前列地尔联合阿替普酶治疗急性脑梗合并糖尿病疗效观察[J].J 西南国防医药,2018,28(12):1151-1153.
[37]S.Y.NAH,D.H.KIM,H.RHIM.Ginsenosides:are any of them candidates for drugs acting on the central nervous system[J].J Cns Drug Reviews,2010,13(4):381-404.
[38]T.ZHOU,G.ZU,X.ZHANG,et al.Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson’s disease[J].J Neuropharmacology,2016,101,480-489.
[39]J.SHEN,Z.ZHAO,W.SHANG,et al.Ginsenoside Rg1 nanoparticle penetrating the blood-brain barrier to improve the cerebral function of diabetic rats complicated with cerebral infarction[J].International journal of nanomedicine,2017,12,6477-6486.
[40]S.F.CHU,Z.ZHANG,X.ZHOU,et al.Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway[J].Acta Pharmacol Sin,2019,40(1):13-25.
[41]N.YANG,P.CHEN,Z.TAO,et al.Beneficial effects of ginsenoside-Rg1 on ischemia-induced angiogenesis in diabetic mice[J].Acta biochimica et biophysica Sinica,2012,44(12):999-1005.
[42]H.A.CAI,L.HUANG,L.J.ZHENG,et al.Ginsenoside(Rg-1)promoted the wound closure of diabetic foot ulcer through iNOS elevation via miR-23a/IRF-1 axis[J].Life sciences,2019,233,116525.
(收稿日期:2020-03-02)
基金項目:国家自然科学基金地区基金(81360128);云南省科技厅-昆明医科大学项目联合专项(2017FE468-206);云南省科技厅-昆明医科大学项目联合专项(2017FE467(-025))
作者简介:苏惠(1990-),女,在读硕士研究生,研究方向:药理学研究。
通信作者:杨建宇,E-mail:916461717@qq.com
转载注明来源:https://www.xzbu.com/6/view-15291067.htm